Advanced Mechanics: Final Exam

Semester Ib 2021-2022

January 27th, 2022

Please note the following rules:

- you are not allowed to use the book or the lecture notes, nor other notes or books
- you have 2 hours to complete the exam
- please write your student number on each paper sheet you hand in
- please use a separate paper sheet for each problem
- please raise your hand for more paper or to ask a question
- some useful equations are provided on the next page

Points for each problem:

- Problem 1: 5 points
- Problem 2: 10 points
- Problem 3: 20 points
- Problem 4: 15 points

Useful equations

- Generalised momentum:

$$
\begin{equation*}
p_{i}=\frac{\partial L}{\partial \dot{q}_{l}} \tag{0.1}
\end{equation*}
$$

- Hamiltonian:

$$
\begin{equation*}
H\left(q_{j}, p_{j} ; t\right)=\dot{q}_{2} p_{\imath}-L\left(q_{j}, \dot{q}_{j} ; t\right) \tag{0.2}
\end{equation*}
$$

- Hamilton's equations:

$$
\begin{align*}
& \frac{\partial H}{\partial q_{\jmath}}=-\dot{p}_{\jmath}, \tag{0.3}\\
& \frac{\partial H}{\partial p_{\jmath}}=\dot{q}_{j} \tag{0.4}
\end{align*}
$$

- Principal moments of inertia:

$$
\begin{align*}
& \mathrm{I}_{\mathrm{xx}}=\int \mathrm{dm}\left(y^{2}+z^{2}\right) \tag{0.5}\\
& \mathrm{I}_{\mathrm{yy}}=\int \mathrm{dm}\left(x^{2}+z^{2}\right) \tag{0.6}\\
& \mathrm{I}_{\mathrm{zz}}=\int \operatorname{dm}\left(x^{2}+y^{2}\right) \tag{0.7}
\end{align*}
$$

- Infinitesimal (time-like) interval in special relativity:

$$
\begin{equation*}
d s^{2}=c^{2} d t^{2}-(d \mathbf{x})^{2} \tag{0.8}
\end{equation*}
$$

- Volume element in spherical coordinates:

$$
\begin{equation*}
d V=r^{2} d r \sin \theta d \theta d \phi \tag{0.9}
\end{equation*}
$$

- Integrals of sinusoidal functions (for problem 4):

$$
\begin{align*}
& \int_{0}^{2 \pi} \sin ^{2} \phi d \phi=\pi \tag{0.10}\\
& \int_{0}^{2 \pi} \cos ^{2} \phi d \phi=\pi \tag{0.11}\\
& \int_{0}^{\pi} \cos ^{2} \theta \sin \theta d \theta=\frac{2}{3} \tag{0.12}
\end{align*}
$$

Figure 1.

Problem 1

Consider an harmonic oscillator with a spring constant k and mass m as in Fig. 1. The mass slides without friction on a horizontal plane. Compute the Hamiltonian and the explicit Hamilton's equations of motion.
Note: for clarity, please don't forget to define your coordinates of choice.
[5 points]

Problem 2

Consider the relativistic action written as an invariant quantity using the proper time

$$
\begin{equation*}
S=-k c \int_{\tau_{1}}^{\tau_{2}} d \tau \tag{0.13}
\end{equation*}
$$

where k is a constant and c is the speed of light. Using the definition of proper time (time measured by a clock in its own rest frame), show that the relativistic Lagrangian for a free relativistic particle of mass m in an arbitrary frame can be written as

$$
\begin{equation*}
L=-m c^{2} \sqrt{1-\frac{v^{2}}{c^{2}}} . \tag{0.14}
\end{equation*}
$$

Please make sure you explain the steps in your derivation.
Hint: in order to determine k, expand the Lagrangian for small velocities (v / c much smaller than 1) and compare with the non-relativistic Lagrangian of a free particle.
[10 points]

Problem 3

Consider a particle of mass m moving under the effect of a central force (potential $\mathrm{V}(\mathrm{r})$).
(3a) Compute the Lagrangian in spherical coordinates ($\{r, \theta, \phi\}$ as in Fig. 2) verifying that it is given by:

$$
\begin{equation*}
L=\frac{m}{2}\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2}\right)-V(r) \tag{0.15}
\end{equation*}
$$

Figure 2. From cartesian to spherical coordinates: $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta$, where $0 \leq \theta \leq \pi$ and $0 \leq \phi \leq 2 \pi$.

[10 points]

(3b) Compute the generalised momenta $\left(p_{r}, p_{\theta}, p_{\phi}\right)$, and the Hamiltonian $H\left(r, \theta, \phi, p_{r}, p_{\theta}, p_{\phi}\right)$. [5 points]
(3c) Compute the explicit Hamilton's equations of motion. [5 points]

Problem 4

Consider a sphere of radius R and uniformly distributed mass m (see Fig. 3). Determine the principal moments of inertia ($\mathrm{I}_{\mathrm{xx}}, \mathrm{I}_{\mathrm{yy}}$ and I_{zz}) with respect to the center of mass of the sphere.
Please note: you should take advantage of symmetry arguments in order to shorten your calculations: how do $I_{y y}$ and $I_{z z}$ relate to $I_{x x}$?
[15 points]

Figure 3.

